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Abstract
We study the upscaling of advective pore-scale dispersion in terms of the Eulerian velocity
distribution and advective tortuosity, both flow attributes, and of the average pore length, a
mediumattribute. The stochastic particlemotion ismodeled as a time-domain randomwalk, in
which particlesmove along streamlines in equidistant spatial stepswith randomvelocities and
thus random transition times. Particle velocities describe stationary spatialMarkov processes,
which evolve along streamlines on the mean pore length. The streamwise motion is projected
onto themean flowdirection using tortuosity. This upscaled stochastic particlemodel predicts
accurately the (non-Fickian) transport dynamics obtained from direct numerical simulations
of particle transport in a three-dimensional digitized Berea sandstone sample. It captures all
aspects of transport and sheds light on the dependence of the upscaled transport behavior on
the flow heterogeneity and the initial particle distribution, which are critical for the accurate
modeling of dispersion from the pre-asymptotic to asymptotic regimes.

1 Introduction

Upscaling hydrodynamic transport is a critical step for modeling solute dispersion in porous
media. Since the pioneeringworks of de Josselin de Jong (1958) andSaffman (1959), different
approaches have been used for deriving dispersion coefficients and advection–dispersion
models for asymptotic spreading and mixing in heterogeneous media (Bear 1972; Brenner
and Edwards 1993; Salles et al. 1993; Whitaker 1999). However, the asymptotic regime is
often not reached for space and time scales relevant at the laboratory scale, for environmental
or industrial applications (Levy and Berkowitz 2003; Le Borgne and Gouze 2008; Moroni
et al. 2007), which makes it important to account for pre-asymptotic transport, which can in
general not be characterized by constant hydrodynamic dispersion, and thus may be termed
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non-Fickian or anomalous. Non-Fickian pre-asymptotic dispersion is caused by incomplete
mixing on the support scale and thus incomplete sampling of the velocity heterogeneity
due to spatial heterogeneity, which characterizes natural systems (Dentz et al. 2000, 2004,
2011; Berkowitz et al. 2006; Nicolaides et al. 2010; Wood 2009; Le Borgne et al. 2011).
The conditions under which the behavior can asymptotically be described by hydrodynamic
dispersion and the transition to such a regime was discussed in Salles et al. (1993), Dentz
et al. (2004) and Bijeljic and Blunt (2006). For systems characterized by large or infinite
Péclet numbers, non-Fickian behavior may be related to a broad distribution of velocity
values. Recent pore-scale transport studies (De Anna et al. 2013; Kang et al. 2014; Holzner
et al. 2015; Morales et al. 2017; Carrel et al. 2018) showed that observed intermittency of
temporal velocity series along individual streamlines are closely related to the occurrence of
anomalous dispersion.

The quantification of pre-asymptotic dispersion and its causes in the medium and flow
properties is a critical issue for upscaling hydrodynamic transport from the pore to the Darcy
scale. Pre-asymptotic (non-Fickian) dispersionon the pore andDarcy scales has beenmodeled
by a variety of non-local approaches (Neuman and Tartakovsky 2009), such as the multirate
mass transfer (MRMT) approach (Haggerty and Gorelick 1995; Carrera et al. 1998), volume
averaging and two-equation formulations for transport (Cherblanc et al. 2007; Davit et al.
2010; Porta et al. 2013), the continuous-time and time-domain random walk approaches
(Berkowitz and Scher 1995; Dentz and Berkowitz 2003; Berkowitz et al. 2006; Bijeljic
and Blunt 2006; Wright et al. 2019; Sund et al. 2015, 2017; Sherman et al. 2019), see
also the recent review by Noetinger et al. (2016). A critical step for implementing these
non-local models concerns the relation between the velocity statistics that are controlled by
the pore-scale structure and the macroscopic transport process. Porta et al. (2015) derived
a mobile–immobile model to upscale pore-scale transport accounting for information on
the pore-space and the pore-scale velocity distributions. Meyer and Bijeljic (2016) used a
Langevin approach to account for the impact of pore-scale velocity heterogeneity on solute
dispersion. Due to their central role for transport upscaling from the pore to the Darcy scale,
pore-scale particle velocities and their relation to the flow velocity and porous medium
structure have been the subject of recent research (De Anna et al. 2013, 2017; Siena et al.
2014; Holzner et al. 2015; Morales et al. 2017; Jin et al. 2016; Matyka et al. 2016; Dentz
et al. 2018).

A strategy to systematically upscale (advective) transport from the pore to the Darcy
scale consists in identifying the stochastic dynamics of particle velocities, formalizing the
link between Lagrangian and Eulerian statistics, and relating the flow statistics to statistical
pore-scale properties. Morales et al. (2017) and Puyguiraud et al. (2019) linked observed
intermittent patterns in the temporal velocity series to the spatial persistence of pore-scale
velocities. These authors showed that velocity series sampled equidistantly along streamlines
do not exhibit such intermittent patterns and can be represented by a spatial Markov process.
Puyguiraud et al. (2019) showed for the Berea sandstone sample under consideration in
this paper that the spatial velocity series can be represented by an ergodic and stationary
Markov process at the sample scale. This observation implies that upscaled transport can be
understood and modeled in terms of time-domain or continuous time random walks.

In this paper, we use the representation of equidistant particle velocities as a stationary
Markov process to upscale particle motion and solute transport in the framework of time-
domain randomwalks in terms of the pore-scale velocity distribution and characteristic length
scale. We employ two velocity Markov models of different complexity. The first is based
on a Bernoulli process for the prediction of the velocity series, the second on an Ornstein–
Uhlenbeck velocity process for the normal scores of velocity (Morales et al. 2017; Puyguiraud
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et al. 2019). The resulting time-domain randomwalkmodels are used to predict breakthrough
curves, displacement mean, and variance as well as the full spatial particle distributions or
propagators from full three-dimensional flow, and particle tracking simulations for a Berea
sandstone sample.

The paper is organized as follows. The methodology we use is detailed in Sect. 2. We
specify the flow equation and the transport equation that are solved, and summarize the details
about the image acquisition, the flow simulation and the particle tracking simulations. Then,
we present the stochastic particle model and describe the parameterization of the velocity
process. In Sect. 3, we compare the transport data of the three-dimensional direct particle
tracking simulations to the predictions of the upscaled models for uniform and flux-weighted
injection modes. The conclusions are presented in Sect. 4.

2 Methodology

In this section, we first present the basic equations for the three-dimensional direct numerical
simulation (DNS) of flow and particle motion (particle tracking simulations) at pore scale.
Then,we detail the upscalingmethodology in the framework of a stochasticmodel and finally,
we provide a summary of the numerical methodology.

2.1 Flow and Particle Motion

The Navier–Stokes momentum balance equation is classically used to model pore-scale flow
v(x) of an incompressible fluid. At low values of the Reynolds number, the inertial forces
are negligible in comparison with the viscous forces, and the momentum equation reduces
to, Leal (2007):

∇2v(x) = 1

ν
∇ p(x), (1)

where p(x) and ν denote the pressure and the kinematic viscosity of the fluid, respectively.
The associated mass conservation equation is ∇ · v(x) = 0. The position vector is denoted
by x = (x1, x2, x3)�. The problem is solved by fixing constant pressure at both the inlet and
outlet boundaries of the sample and no-slip condition at the void–solid interfaces and at the
other physical boundaries of the sample. Details concerning the computations and sample
characteristics are given in Sect. 2.3. The magnitude of the Eulerian velocity v(x) in the
following is denoted by ve(x) = ‖v(x)‖. The probability density function (PDF) of ve(x)
is denoted by pe(v). It can be obtained by spatial sampling over a sampling volume that is
representative of flow variability.

We consider purely advective transport. Thus, the trajectory of a particle originally located
at x(t = 0, a) = a is described by

dx(t, a)
dt

= v[x(t, a)], (2)

where v[x(t, a)] is the Lagrangian velocity. Its magnitude is vt (t, a) = ‖v[x(t, a)]‖. The
travel distance s(t, a) along a particle trajectory until time t and the travel time t(s, a) up to
a streamwise distance t(s, a) are given by

ds(t, a)
dt

= vt (t, a),
dt(s, a)

ds
= 1

vs(s, a)
, (3a)
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where we defined vs(s, a) = vt [t(s), a]. We perform a variable change from time to stream-
wise distance, which renders time as t(s, a) a dependent variable. The transform from t → s
implies setting dt = ds/vs(s, a) in Eq. (2). This gives for the particle position as a function
of distance s the evolution equation

dx̂(s, a)
ds

= ω(s, a), ω(s, a) = v[x̂(s, a)]
vs(s, a)

, (3b)

where ω(s, a) denotes the unit vector in flow direction, v[x̂(s, a)] is denoted the s(pace)-
Lagrangian velocity (Dentz et al. 2016; Puyguiraud et al. 2019) because it is the particle
velocity at a given spatial distance s along the particle trajectory, and its magnitude
‖v[x(s, a)]‖ is equal to vs(s, a). We will refer in the following to vs(s) simply as parti-
cle velocity. Equation (3) describes the motion of a particle along a given streamline as a
time-domain random walk (Painter and Cvetkovic 2005; Noetinger et al. 2016) in that parti-
cles perform transitions over a fixed streamwise distance in variable time, which depends on
the local velocity. Particle motion can be solved alternatively by integrating Eq. (2) in time or
by integrating the system of equations (3) in streamwise distance. The numerical simulations
performed in this paper use the former, and the upscaling methodology presented in the next
section uses the latter.

The distribution of initial particle positions is denoted by ρ(a). We consider here two
different initial particle distributions, uniform and flux-weighted, in order to probe the impact
of the initial condition on average particle transport. The uniform and flux-weighted initial
distribution read as

ρ(a) = 1

V0
I(a ∈ Ω0), ρ(a) = ve(a)∫

Ω0

dxve(x)
I(a ∈ Ω0), (4)

where Ω0 is the injection domain, V0 its volume; I(·) is the indicator function which is 1 if
its argument is true and 0 otherwise.

In the following, we study the transport behavior in terms of breakthrough curves and
spatial particle distributions and subsequently quantify dispersion by analyzing the first and
second displacement moments. The breakthrough curve at a control plane located at position
x1 in the mean flow direction is defined in terms of the first passage time

τ(x1, a) = min[t |x1(t, a) ≥ x1]. (5)

where x1(t, a) denotes the position of particle a after time t in mean flow direction. The
breakthrough curve is equal to the PDF of the first passage times,

f (t, x1) =
∫

Ω0

daρ(a)δ [t − τ(x1, a)] . (6)

The breakthrough curves contain information on the residence times within the rock sample
or the space between the inlet and control plane, and the concentration in the effluent fluid.
This information is useful for modeling reactive transport, for instance for applications to
design aquifer decontamination or model laboratory dissolution-precipitation experiments.
Furthermore, we consider the spatial particle distribution, also called propagator, which is
defined by

g(x1, t) =
∫

Ω0

daρ(a)δ [x1 − x1(t, a)] . (7)
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This quantity gives information on the dispersion of a solute or particle cloud. Likewise, this
information can be used in the modeling of reactive transport and deployment of a reactant
species, as well as for assessment of propagators in NMR imaging of flow and transport in
porous media. The mean displacement and displacement variance are defined by

m1(t) =
∫

Ω0

daρ(a)x1(t, a), (8)

σ 2(t) =
∫

Ω0

daρ(a) [x1(t, a) − m1(t)]
2 . (9)

They measure the center of mass position and spatial variance of the particle distribution
g(x1, t). The spatial variance is a measure for hydrodynamic dispersion. If its asymptotic
evolution is linear, its growth rate is equal to the hydrodynamic dispersion coefficient.

2.2 Stochastic Model

We formulate a stochastic model for particle motion in the mean flow direction x1 of the
coordinate system based on the stochastic representation of the s-Lagrangian velocity mag-
nitude vs(s, a) as a stationary and ergodicMarkov process vs(s) (Puyguiraud et al. 2019). The
Markov process for vs(s) is characterized by the PDF r(v, s−s′|v′) to make a transition from
v′ = vs(s′) at distance s′ to v = vs(s) at s > s′ and the steady state distribution ps(v). Both
the velocity PDF p(v, s) and the transition PDF r(v, s|v′) satisfy the Chapman–Kolmogorov
equation (Risken 1996)

p(v, s) =
∞∫

0

r(v, s − s′|v′)p(v′, s′)dv′. (10)

The transition probability converges to the steady state distribution in the limit of s 
 �c
with �c a characteristic velocity correlation scale,

lim
s→∞ r(v, s|v′) = ps(v). (11)

The characteristic correlation scale �c ≈ 2.5�p where �p is the characteristic pore length.
Equation (11) implies that the distribution converges to the steady state PDF P(v) inde-
pendently of the initial condition p0(v). The steady state distribution ps(v) is related to the
Eulerian velocity PDF pe(v) through flux weighting (Dentz et al. 2016; Puyguiraud et al.
2019)

ps(v) = vpe(v)

〈ve〉 , (12)

where 〈ve〉 is the mean Eulerian velocity.
In this framework, the irregular particle motion described by (3) is represented by the

stochastic evolution equations

dx̂1(s)

ds
= χ−1,

dt(s)

ds
= 1

vs(s)
, (13a)

where x̂1(s) indicates the position of the particle in the mean flow direction (denoted by the
subscript 1 similarly to Sect. 2.1). Note that the displacement rate ω1(s) in 1-direction in
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general fluctuates with s. We represent it here by its average 〈ω1(s)〉 = χ−1, where χ is the
advective tortuosity given by Koponen et al. (1996); Ghanbarian et al. (2013)

χ = 〈ve(x)〉
〈v1(x)〉 . (13b)

The advective tortuosity compares the distance s along the streamline with the average linear
distance in the mean flow direction 〈x1(s)〉, see “Appendix A” for details. It is an indicator for
the complexity of the pore space and gives information on advective excursions transverse
to the mean flow direction.

The stochastic model (13) belongs to the continuous-time random walk or time-domain
random walk class of models because the time increment varies between random walk
steps (Noetinger et al. 2016). Different initial particle distributions ρ(a) are in this frame-
work quantified in terms of the corresponding initial velocity distribution p0(v), this means
in terms of the PDF of velocities ve(x) in the injection domain Ω0,

p0(v) = 1

V0

∫

Ω0

daρ(a)δ [v − ve(a)] . (14)

The breakthrough curve f (t, x1) is in this framework given by

f (t, x1) = 〈δ [t − t(x1χ)]〉 , (15)

where the angular brackets denote the ensemble average over all particles and t(x1χ) denotes
the travel time over the streamlines distance s = x1χ . Themean displacement and its variance
are

m1(t) = 〈
x̂1[s(t)]

〉
, (16)

σ 2(t) =
〈[
x̂1[s(t)] − m1(t)

]2〉
, (17)

where s(t) = max [s|t(s) ≤ t]. The spatial particle distribution is accordingly given by

g(x1, t) = 〈
δ
(
x1 − x̂1[s(t)]

)〉
. (18)

In the following, we briefly review two Markov processes, which model the evolution of
p(v, s) from arbitrary initial conditions, a Bernoulli velocity process (Dentz et al. 2016) and
an Ornstein–Uhlenbeck process (Morales et al. 2017) for the evolution of the normal scores
of velocity.

2.2.1 Bernoulli Process

This Markov process for the prediction of the fluid particle velocities is modeled as a
Bernoulli process where the velocity changes after a distance Δs according to a Bernoulli
trial. This means that the particle velocity vs(s) does not change with probability pB(Δs) =
exp(−Δs/�c) and changes randomly with probability 1− pB(Δs) to a velocity which is sam-
pled from the steady state PDF ps(v). The transition probability r(v,Δs|v′) is then expressed
by Dentz et al. (2016)

r(v,Δs|v′) = exp(−Δs/�c)δ(v − v′) + [1 − exp(−Δs/�c)]P(v). (19)

The Bernoulli process reproduces qualitatively the evolution of the Lagrangian velocity
statistics, but underestimates the convergence rate of p(v, s) toward its steady state at low
velocities (Puyguiraud et al. 2019). The Bernoulli process does not account for any velocity
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dependence of the decorrelation rate and is therefore not capable of capturing the faster
decorrelation of low velocities. Nevertheless, we consider the Bernoulli process as a possible
evolution model for the particle velocities due to its simplicity. In the following, we refer to
this model as Bernoulli model.

2.2.2 Ornstein–Uhlenbeck Process

This velocity Markov process considers the evolution of the normal scores

w(s) = Φ−1 (Π [vs(s)]) ≡ F[vs(s)], (20)

where Φ(w) is the cumulative Gaussian distribution and Π(v) the cumulative steady state
velocity distribution,

Φ(w) = 1 + erf(w/
√
2)

2
, Π(v) =

v∫

0

ps(v
′)dv′, (21)

where ps(v) is the steady state velocity distribution. The normal scores w(s) follow the
Ornstein–Uhlenbeck process (Gardiner 2010; Morales et al. 2017)

dw(s)

ds
= −�−1

c w(s) +
√
2�−1

c ξ(s), (22)

where ξ(s) is a Gaussian white noise characterized by zero mean 〈ξ(t)〉 = 0 and covariance
〈ξ(s)ξ(s′)〉 = δ(s − s′). The Ornstein–Uhlenbeck process is a mean reverting process. In
the absence of the noise terms, w(s) relaxes exponentially fast toward 0. In the presence of
noise, there is a steady state for s 
 �c, at which w(s) ∼ ξ(s). The transition PDF for the
Ornstein–Uhlenbeck process is given by Gardiner (2010)

rw(w, s|w′) =
exp

(
−[w−w′ exp(−s/�c)]2

2[1−exp(−2s/�c)]
)

√
2π

[
1 − exp(−2s/�c)

] . (23)

The velocity values vs(s) are obtained from w(s) at any distance s through the Smirnov
transform (Devroye 1986)

v(s) = Π−1(Φ[w(s)]) ≡ F−1[w(s)]. (24)

The velocity transition PDF r(v, s|v′) is thus given by

r(v, s|v′) = rw[F(v), F(v′)]dF(v)

dv
. (25)

In the following, we refer to this model as the OU model.
The process (22) is implemented numerically via an Euler scheme as,

wn+1 = wn − �−1
c wnΔs +

√
2�−1

s Δsξn, (26)

where wn = w(nΔs) and ξn is a Gaussian random variable with 0 mean and unit variance.
Accurate results are obtained using a discretization Δs ≤ �c/10.
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Fig. 1 Illustration of the
subdomain of the Berea
sandstone sample under
consideration and sample
streamlines

2.3 Rock Sample, Flow Field andVelocity Statistics

Here, we provide a brief summary of the rock sample, numerical methodology and veloc-
ity statistics. Details on the image acquisition and segmentation as well as the flow field
computation can be found in Gjetvaj et al. (2015). Details regarding the particle tracking
computation can be found in Puyguiraud et al. (2019).

We use a three-dimensional digitized image (9003 voxels) of a sample of aBerea sandstone
(Upper Berea Sandstone unit, Ohio, USA). Berea sandstone is a sedimentary rock charac-
terized by medium porosity and permeability values as well as medium pore-scale structural
heterogeneity compared to common reservoir rocks. Because of these average properties,
its simple composition (quasi pure silica) and its remarkable macroscopic homogeneity that
allows easy comparisons, Berea sandstones are often used as a reservoir rock standard for
experimental/laboratory works. The image is reconstructed from X-ray microtomography
(Paganin et al. 2002; Sanchez et al. 2012). The material density is recorded in a raw gray-
level image, which is segmented (Smal et al. 2018) in order to obtain a binary image mapping
the solid and the conne porosity. The porosity of the sample is 0.18. The voxel length is 10−6

m. The average pore length is 1.5 × 10−4 m.
The steady state Navier–Stokes equations are solved using the SIMPLE method imple-

mented in OpenFOAM (simpleFoam) (Weller et al. 1998) in order to obtain the velocity
components at the center of the voxel surface for the full domain. The mean flow velocity
is aligned with the 1-direction of the coordinate system and given by 〈v1〉 = 4.9 × 10−4

m/s. The characteristic time scale is given by τc = �p/〈v1〉 = 3 × 10−1 s. The streamlines
starting at any location inΩ0 are built from the interpolated velocity using quadratic interpo-
lation at the voxel in contact with the solid and linear interpolation elsewhere (Pollock 1988;
Mostaghimi et al. 2012). The injection domain Ω0 is a box of an extension of 50 voxels
in mean flow direction and 900 voxels in the directions perpendicular. Figure 1 illustrates a
subdomain of the segmented Berea sandstone image and some example trajectories through
the pore-space.
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Fig. 2 Probability distribution
function of the s-Lagrangian
velocity, ps(v) (black empty
circles), the initial velocities for
uniform (blue) and flux-weighted
(red) injections, p0(v), and the
Eulerian velocity magnitude
pe(v) (black full circles)
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The stochastic models for particle motion described in the previous section require the
knowledge of the velocity correlation length �c, the steady state velocity PDF ps(v) and the
initial velocity PDF p0(v). Puyguiraud et al. (2019) performed a full statistical analysis of
the velocity statistics of the rock sample under consideration. There, the velocity correlation
length �c is found to be 2.5 times the characteristic pore length �p. The mean Eulerian
velocity magnitude is 〈ve〉 = 8.05 × 10−4 m/s, which gives the advective tortuosity χ =
〈ve〉/〈v1〉 = 1.64. The mean s-Lagrangian velocity magnitude is 〈vs〉 = 3.4 × 10−3. The
steady state velocity distribution ps(v), the Eulerian velocity distribution pe(v), and the
initial velocity distributions for uniform and flux-weighted injections are shown in Fig. 2.
All velocity distributions show a strong tailing toward low velocities. For the flux-weighted
injection, the initial velocity PDF p0(v) is close to the steady state PDF ps(v), while for
the uniform injection, p0(v) is close to the Eulerian velocity PDF pe(v) (Puyguiraud et al.
2019). The next section studies particle transport through the sample using direct numerical
simulations of purely advective particle motion, and its upscaling in terms of the velocity
correlation length �c and velocity PDF ps(v) in the framework of the velocityMarkovmodels
discussed in the previous section.

3 Results

We study here the upscaling of the purely advective particle motion in the Berea sand-
stone sample discussed in the previous section. Hydrodynamic transport in Berea sandstones
is known to be non-Fickian at the scale of centimeter sized samples (Gjetvaj et al. 2015;
Bijeljic et al. 2011). The direct numerical flow and particle tracking simulations represent
the reference data. The large-scale behavior is measured in terms of particle breakthrough
curves at different control planes, the particle displacement variance or dispersion, and the
spatial particle distribution or propagators. These behaviors are then compared to the ones
predicted by the stochastic particle models presented in the previous section, which quantify
the upscaled particle motion.

3.1 Breakthrough Curves

The breakthrough curve denotes the residence time distribution of the solute in the domain. It
may be used to infer the likeliness of chemical reactions to occur, and to assess the retention
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Fig. 3 Breakthrough curves for a
flux-weighted injection obtained
from the DNS (circles), the
Bernoulli CTRW (dashed line),
and OU CTRW (solid line) at
planes located at 6�p, 36�p, and
200�p (from dark blue to red)
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10−7
10−6
10−5
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10−3
10−2
10−1

10−1 100 101 102 103 104 105

t/τc

t−2

or storage potential of the subdomain, for example. Under uniform and homogeneous flow
conditions, the BTC at control plane has an inverse Gaussian shape and decays sharply at long
times. Under heterogeneous flow conditions, breakthrough curves are characterized by early
and late particle arrivals. In the following, we consider BTCs for flux-weighted and uniform
injection conditions and compare them to the predictions of the upscaled transport models.

3.1.1 Flux-Weighted Injection

In this section, we use a flux-weighted injection at the inlet for the computation of the
breakthrough curves. The velocity PDF p0(v) at the inlet is close to the stationary PDF ps(v),
see Fig. 2. This implies that the particle velocities are approximately stationary. We compare
the breakthrough curves of the direct simulation described in Sect. 2.3 to the two CTRW
models described in Sect. 2.2.Weperform the simulations using 107 particles in theDNScase,
while we used 109 for the upscaled models. We compute arrival times at distances x1 = 6�p
which corresponds to the end of the sample, x1 = 36�p, and x1 = 200�p. To compute the
breakthrough curves at distances larger than the sample size, a particle exiting the sample at
the outlet is reinjected at the inlet while conserving the velocity continuity (Puyguiraud et al.
2019).

Figure 3 displays the breakthrough curves from the DNS and the two stochastic models.
We observe a strong anomalous behavior characterized by early peak arrivals and long tailing
at late times. The late time tails display the power law t−2 at all distances. The exponent
can be predicted from CTRW theory because it is directly linked to the behavior of the
low velocity part of the steady Lagrangian velocity PDF, see “Appendix B”. The velocity
distribution scales as ps(v) ∝ vβ−1 with β = 1 for the small values of v. This implies that
f (t, x1) ∝ t−2.
The Bernoulli and OU models perform equally well. The early, intermediate, and late

times are well captured even if at the closest control plane the two models do not reproduce
the first arrivals perfectly. The two models give similar results because the injection velocity
PDF is close to the steady state PDF and therefore the models only need to be able to preserve
this distribution over time, which they are both capable of doing (Puyguiraud et al. 2019).

3.1.2 Uniform Injection

The results are however different when using a uniform injection as initial condition. Under
this condition, the particle velocities are non-stationary. Figure 4 displays the breakthrough
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Fig. 4 Breakthrough curves for
uniform injection obtained from
the DNS (circles), the Bernoulli
CTRW (dashed line), and the OU
CTRW (solid line) at planes
located at 6�p, 36�p, and 200�p
(from dark blue to red). Inset:
Comparison between the uniform
and the flux-weighted BTCs for
the direct simulation at the plane
at 36�p
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curves computed at the same distances as in the previous section. The late time slope is very
different from the one obtained for the flux-weighted injection. Here, the late time tailing is
governed by the initial velocity distribution p0(v), which at small v scales as p0(v) ∝ v−0.8,
see Fig. 2. The initial velocities persist within a distance of about �c from the inlet. The
long time behavior is dominated by strong particle retention in the vicinity of the inlet and
dominated by the transition time over the distance �c,

ψ0(t) = �c

t2
p0(�c/t) ∝ t−1.2, (27)

see also “Appendix B”.
Both, the Bernoulli and OU models provide good predictions of the breakthrough curves

obtained from the DNS. The peak position andwidth are well captured. Also, the behaviors at
intermediate and long times are accurately predicted. Both models give the correct long time
tailing, while the Bernoulli model slightly overestimates the tail compared to the DNS. This
can be traced back to the observation that the Bernoulli model overestimates the persistence
of low velocities (Puyguiraud et al. 2019).

3.2 Particle Distribution

In this section, we study the evolution of the spatial particle distributions, or propagators
g(x1, t) with focus on the differences in the evolution due to the initial particle distribution.
The propagator at a given time maps the spatial heterogeneity of the velocity field which
controls the spatial distribution of the mass in the system and, for instance, gives information
on the localization of reaction with the solid phase. Thus, together with the breakthrough
curve, it allows for a spatiotemporal characterization of the solute distribution.

Figure 5 shows g(x1, t) for uniform and flux-weighted injection conditions at three dif-
ferent times. In both cases, the particle distributions are asymmetric and characterized by a
leading edge and long spatial tail. These behaviors are caused by the broad distribution of par-
ticle velocities. For the uniform injection, the proportion of particles in low velocity regions
is larger than for the flux-weighted injection. Thus, the tailing at short and intermediate times
is stronger in the uniform than in the flux-weighted case. With increasing time, the spatial
distributions lose the memory of the initial condition and assume the same shape. Note that
this is different from the breakthrough curves, whose long time behavior is dominated by the
injection condition.
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Fig. 5 Evolution of the DNS
(circles), OU model (solid lines),
and Bernoulli model (dashed
lines) mean flow direction
propagators for (top panel)
uniform injection and (bottom
panel) flux-weighted injection at
times t = 3.5 × 10−1τc (blue),
t = 3.5 × 102τc (orange), and
t = 3.5 × 104τc (red)
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The OU and Bernoulli models predict the spatial profiles under both injection conditions
for times t > τc. For times t < τc, the stochastic models do not capture the trailing tail in
the case of the flux-weighted injection. At times t < τc, the tail of the spatial distribution in
the direct numerical simulation is determined by the velocity components v1(x) < �c/t in
the mean flow direction, this means by particles that persist in their initial velocity. Thus, if

p1(v) =
∫

Ω0

daρ(a)δ [v − v1(a)] , (28)

is the PDF of the 1-component of the particle velocities in the injection domain, the particle
distribution at early times is obtained through the variable transform x1 = v1t as

g(x1, t) = t−1 p1(x1/t). (29)

In the upscaled stochastic particle model, likewise, the tail of the spatial distribution is due to
the particle velocities that persist in their initial velocity. The distance traveled at the initial
velocity here, however, is x1 = χv0t because v0 is the initial velocity magnitude. Thus, the
upscaled particle model predicts for the early time distribution

g(x1, t) = χ t−1 p0(χx1/t), (30)

where p0(v) is the PDF of the velocity magnitude in the injection domain. The PDFs of
the 1-component and magnitude are in general different, which explains the difference in
the tailing behaviors for small times in the case of flux-weighted injection. For the uniform
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Fig. 6 Evolution of the (top
panel) mean displacement and
(bottom panel) displacement
variance in time for both uniform
(blue) and flux-weighted (red)
injections. The DNS and OU
models results are, respectively,
displayed with open circles and
solid lines. The black lines
indicate the t/ ln(t) and
t2/ ln(t)3 late time scalings

10−2

10−1

100

101

102

103

104

10−1 100 101 102 103 104

m
ea

n
t/τc

t/ln(t)

10−4

10−2

100

102

104

106

108

10−1 100 101 102 103 104

v
a
ri

a
n
ce

t/τc

t2/ln(t)3

injection, the distributions of the 1-component and the absolute value of velocity are similar
in shape, which explains the good match between the stochastic models and the DNS data.
While the stochastic models correctly capture the memory of the injection condition on the
evolution of the spatial distribution, we do not expect them to be valid at short times and
distances, for which the behaviors depend on the local details of the velocity fluctuations.

3.3 Dispersion

In this section, we consider the displacement mean and variance. The evolution of the dis-
placement mean is an indicator of t-Lagrangian stationarity, while the displacement variance
gives information on particle dispersion. We have seen in the previous section that the
Bernoulli and OU models perform equally well in the prediction of the spatial profiles.
Thus, here, we compare the DNS data for the displacement mean and variance with the
prediction of the stochastic particle model based on the OU model only.

Figure 6 shows the evolution of the mean displacement for uniform and flux-weighted
injection conditions. The early time behavior is in both cases linear and given by 〈v1〉t , where

〈v1〉 =
∞∫

−∞
dvvp1(v) (31)
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is the average over the 1-component of the particle velocities in the injection domain. Thus,
the slope for the flux-weighted injection is larger than for the uniform injection. At t > τc, the
initial linear behavior crosses over to the long time behavior, which is independent from the
injection conditions. For the steady state velocity distribution ps(v) illustrated in Fig. 2, for
which ps(v) ≈ constant at low velocities, CTRW theory predicts m1(t) ∝ t/ ln(t) (Comolli
and Dentz 2017). This is confirmed by the DNS data. Both the OU model and the Bernoulli
model (not shown) predict the evolution of the mean velocity, with a slight mismatch at short
times for the reasons discussed above.

Figure 6 shows the evolution of the displacement variance σ 2(t) for uniform and flux-
weighted initial conditions. At early times, the behaviors are ballistic, this means

σ 2(t) = σ 2
v1
t2, (32)

where σ 2
v1

is the variance of p1(v). As, for the mean, the displacement variance is larger for
the flux-weighted than for the uniform injection. At t > τc, the variance crosses over from the
ballistic toward the asymptotic regime. For t 
 τc, CTRW theory predicts σ 2(t) ∝ t2/ ln(t)3

(Comolli and Dentz 2017). The behavior is superdiffusive. Both the OU and Bernoulli (not
shown) models predict the evolution of the displacement variance with a mismatch in the
ballistic early time behaviors because the stochastic models are determined by the statistics
of the velocity magnitude.

4 Conclusions

Using direct three-dimensional pore-scale simulations of flow and transport in a sample of
Berea sandstone as a reference case, we have shown that the upscaling of pore-scale dis-
persion can be accurately performed using a stochastic approach based on velocity Markov
models for equidistantly sampled particle velocities. The upscaled model is implemented in
the framework of a time-domain or continuous-time randomwalk approach, which describes
particle motion in equidistant spatial steps with random transition times. The presented mod-
eling approach is predictive in the sense that it depends on the Eulerian velocity distribution
and advective tortuosity, both flow attributes, and the average pore length which is a medium
attribute. It is worth noticing that this dependence allows, in turn, inferring information on the
velocity statistics and pore length from (experimental) observations of breakthrough curves,
spatial particle distributions, and/or displacement moments.

Our analysis has shown that the observed transport behaviors are sensitive to the initial
distribution of the tracer particles. Breakthrough curve tailing, for example, can depend on
the initial velocity distribution. Under this condition, the breakthrough curve tail gives infor-
mation on the steady state velocity distribution in the sample only if the injection domain is
already representative (large enough) for the initial velocity distribution to be equal to the
stationary PDF, otherwise, the breakthrough curve gives information on the local velocities
in the injection domain. Similarly, the spatial particle distribution depends at short and inter-
mediate times on the injection condition. At late times, however, the memory of the initial
condition diminishes and the shape becomes independent from the injection condition. This
is also reflected in the displacement mean and variance. The early time behaviors of the
displacement mean and variance give information on the velocity mean and variance in the
injection domain. At late times, the displacement mean shows slightly sublinear behavior,
the variance being superlinear, which is due to the tail of the steady state velocity distribution
toward low velocity values. In this sense, the evolution of the moments can be seen as a
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scan through the velocity PDF. At short times, it is dominated by the high and intermediate
velocity values, which determine the velocity mean and variance, at long times by the low
velocities. The upscaled stochastic particle models can be conditioned on the injection condi-
tion through the distribution of initial particle velocities and is able to predict the dependence
on the initial condition and full evolution of particle dispersion. We consider two velocity
Markov models, the Bernoulli and Ornstein–Uhlenbeck models, which both are parameter-
ized by the velocity correlation length and steady s-Lagrangian velocity PDF. While both
models predict the evolution from an initial velocity PDF toward the steady state, they differ
in the convergence rates as discussed in Puyguiraud et al. (2019). Both processes predict the
transport behavior and dependence on the initial distribution, which indicates that here the
details of the evolution are secondary compared to the fact that there is an evolution.

Thepresented analysis and the derived stochastic particlemodels consider purely advective
transport. Thus, they are directly relevant for transport scenarios characterized by high Péclet
numbers, such as solute transport at high flow rates and passive particles characterized by low
diffusion coefficients. The stochastic model is based on a Markov model for the streamwise
particle velocity; this means that velocities are sampled advectively at a constant frequency in
space. The breakthrough curve tailing, for example, is due to the persistence of low velocities
over a constant length scale, the pore length. For finite Péclet numbers, particle velocities
may be decorrelated due to diffusion across streamlines and low advective transition times
may be cut off at the characteristic diffusion time. Thus, we expect anomalous behavior to
persist in an intermediate regime depending on the Péclet number and to transition toward
normal behavior at times larger than the characteristic pore-scale diffusion time.

Hydrodynamic dispersion and other pore-scale phenomena have their origins in pore-
scale velocity fluctuations. Thus, the presented upscaled stochastic model and the associated
parameterization can serve as a basis for the systematic quantification of the impact of pore-
scale velocity fluctuations on Darcy scale transport phenomena.

Funding The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement No.
617511 (MHetScale). This work was partially funded by the CNRS-PICS project CROSSCALE, project
number 280090.

Appendix: A Tortuosity

We derive here the average of the ω1(s, a) along a streamline under ergodic conditions. To
this end, we first note that the position x1(s, a) can be written by integration of (3) as

x1(s, a) = s

[
1

s

∫ s

0
ω1(s

′, a)ds′
]

. (33)

The expression in the square brackets denotes the average of ω1(s, a) along a particle trajec-
tory. At the same time, it denotes the ratio of linear to streamwise distance,

〈ω1(s, a)〉s = lim
s→∞

1

s

∫ s

0
ω1(s

′, a)ds′ = x1(s, a)
s

, (34)

where the angular brackets with subscript s denote the streamwise average along a trajectory.
The average of ω1(s, a) over an ensemble of particles is defined by

〈ω1(s, a)〉 = lim
V0→∞

1

V0

∫
Ω0

v1[x(s, a)]
ve[x(s, a)]ρ(a)da. (35)
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We consider a flux-weighted initial condition, see (4). Under ergodic conditions, this initial
condition corresponds to the steady state velocity PDF ps(v), which is equal to the flux-
weighted Eulerian velocity PDF. This can be seen by using

ρ(a) = 1

V0

ve(a)
〈ve(x)〉 I(a ∈ Ω0), (36)

in the limit V0 → ∞. Also, Koponen et al. (1996) pointed out that it is natural for porous
media to consider a flux-weighted average, see also Ghanbarian et al. (2013). Furthermore,
under ergodic conditions, the average over a single-particle trajectory is equal to the average
over the initial ensemble of particles and so

〈ω1(s, a)〉s = 〈ω1(s, a)〉 = 〈x1(s, a)〉
s

= χ−1. (37)

Using expression (36) in (35), we obtain

〈ω1(s, a)〉 = lim
V0→∞

1

V0

∫
Ω0

v1[x(s, a)]
ve[x(s, a)]

ve(a)
〈ve(x)〉da. (38)

In order to evaluate this expression, we perform the variable change a → x(s, a),

〈ω1(s, a)〉 = lim
V0→∞

1

V0

∫
Ω(s)

v1[x(s, a)]
ve[x(s, a)]

ve(a)
〈ve(x)〉J(a, s)

−1dx, (39)

where J(a, s) is the Jacobian of the transformation. It can be determined by noting that (Batch-
elor 2000, p. 75)

dJ(a, s)
ds

= J(a, s)∇ · v[x(s, a)]
ve[x(s, a)] . (40)

This differential equation can be integrated by noting that ∇ · v(x) = 0 and

dve[x(s, a)]
ds

= ∇ve[x(s, a)] · v[x(s, a)], (41)

which follows by using the chain rule and (3). Thus, we obtain for the initial condition
J(a, s = 0) = 1 that

J(a, s) = ve(a)
ve[x(s, a)] . (42)

Inserting this expression into (38) gives

〈ω1(s, a)〉 = lim
V0→∞

1

V0

∫
Ω(s)

v1(x)
〈ve(a)〉dx = 〈v1〉

〈ve〉 . (43)

This result is consistent with Koponen et al. (1996). This implies that at s 
 �p, we can set

〈ω1(s, a)〉 = χ−1 = 〈v1〉
〈ve〉 . (44)

Appendix: B Continuous-Time RandomWalk

For transition length of the order of the correlation length �c, subsequent particle veloci-
ties can be considered independent and thus, the space-time particle motion (13a) may be
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approximated by

xn+1 = xn + �c

χ
, tn+1 = tn + τn, (45)

where xn = x(sn) with sn = n�c. The random transition time τn is given by

τn = �c

vs(sn)
. (46)

The time increments for n > 0 are distributed as

ψ(t) = �c

t2
ps(�c/t). (47)

For n = 0, the transition time PDF is distributed according to

ψ0(t) = �c

t2
p0(�c/t). (48)

Under steady state conditions, thismeans for p0(v) = ps(v) and thusψ0(v) = ψ(v), Eq. (45)
describes a continuous-time random walk as discussed in Berkowitz et al. (2006). Thus, the
asymptotic behavior of the breakthrough curves and displacement moments can be predicted
based on the scalings of the transition time distribution. Forψ(t) ∝ t−1−β at large times, the
breakthrough curves scale as f (t, x1) ∝ t−1−β , the mean displacement as m1(t) ∝ t , and
the displacement variance as σ 2(t) ∝ t3−β . Note that this scaling for ψ(t) implies that the
velocity distribution ps(v) ∝ vβ−1 at small velocities.
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